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ABSTRACT: Two complementary approaches for the direct
synthesis of 2-dichloro- and 2-trichlorobenzoxazoles from 2-
aminophenols and halogenated nitriles are reported. A green,
noncatalyzed method was shown to proceed in an alcoholic
solvent without the addition of exogenous acid or base. This
method provides a clean and robust synthesis of these
important heterocycles, which contain a key functional group
handle at the 2-position. A complementary platinum multifaceted catalysis approach was also developed in which the metal can
catalyzes multiple mechanistically distinct processes. This method allows for an improved use of the metal catalyst vs stepwise
protocols and provides increased flexibility in the choice of reaction conditions.
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■ INTRODUCTION
Benzoxazoles are a useful class of heterocycle that have found
prominence in the area of medicinal and agricultural
chemistry.1−5 Due to the preponderance of this motif in
biologically active compounds, a number of methods have been
developed for their synthesis6−8 and functionalization.9 One
underutilized method of benzoxazole formation is via the
reaction of 2-aminophenols with nitriles.10 Nitriles have been
used extensively in the synthesis of heterocyclic compounds,
though they are traditionally activated for nucleophilic addition
by the application of strong protic acids11 or Lewis acids12 with
a small number of alternative methods recently developed.13−16

Many of these methods though require harsh reaction
conditions and toxic additives leading to high levels of waste.
Therefore, there remains a demand for increasingly efficient
methods for the convergent synthesis of benzoxazoles from
simple, readily available starting materials. Encouraged by the
potential applications of substituted benzoxazoles, greener
approaches to their direct formation from halogenated nitriles
were investigated. Herein, is described the development of both
a platinum-catalyzed method and a catalysts free method in
methanol for the direct synthesis of 2-dichloro and 2-trichloro
substituted benzoxazoles from halogenated nitriles.

■ EXPERIMENTAL SECTION
General Procedures. Platinum-Catalyzed. To a stirred suspen-

sion of PtCl4 (10 mol %) and 2-aminophenol (1 equiv) in n-hexane (1
M) at rt was added trichloroacetonitrile (2.2 equiv). The resultant
mixture was stirred at 80 °C for 19 h. The solvent was removed under
reduced pressure and the residue was purified by flash column
chromatography on silica gel (3% ethyl acetate in petroleum ether) to
afford the benzoxazole.
Catalyst Free. To a solution of 2-aminophenol (1 equiv) in

methanol (1 M) at rt was added trichloroacetonitrile (1.1 equiv). The
resultant mixture was stirred at 40 °C for 19 h. The solvent was

removed under reduced pressure and the residue was purified by flash
column chromatography on silica gel (3% ethyl acetate in petroleum
ether) to afford the trichlorobenzoxazole.

■ RESULTS AND DISCUSSION

In search of a suitable transition metal catalyst to facilitate a
metal-catalyzed synthesis of benzoxazoles, simple platinum salts
were screened17 in the reaction of 2-aminophenol (1a) with
trichloroacetonitrile (Table 1, entry 1). Initially, platinum(II)
chloride was found to be effective in generating 2-
trichlorobenoxazole 2a from the reaction of 2-aminophenol
(1a) and trichloroacetonitrile in the nonpolar solvent n-hexane.
Previously, it had been shown that primary aliphatic amines do
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Table 1

entry solvent (1 M) catalyst (10 mol %) temp (°C) yield (%)a

1 n-hexane PtCl2 80 72
2 n-hexane PtCl4 80 82
3 n-hexane 80 0
4 EtOH PtCl4 80 64
5 EtOH 80 99
6 EtOH 40 98
7 MeOH 40 99

aIsolated yield.
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no react with trichloroacetonitrile in nonpolar solvents in the
absence of a catalyst.18 After minimal experimentation,19 it was
found that the reaction proceeded in the highest yield when run
in n-hexane at 80 °C in the presence of 10 mol % platinum(IV)
chloride (Table 1, entry 2). Importantly, none of the desired
benzoxazole 2a was observed in the absence of the catalysts
(Table 1, entry 3). As part of a screen utilizing more
environmentally friendly solvents,20,21 it was found that the
protic solvent ethanol was also a viable solvent for the
platinum-catalyzed process.19 Interestingly, when the control
reaction was run in the absence of the platinum species a near
quantitative yield of benzoxazole 2a was isolated (Table 1,
entry 4 vs 5).22 Subsequently, it was found that after 19 h the
reaction between aminophenol (1a) and trichloroacetonitrile to
give benzoxazole 2a at temperatures down to 40 °C in either
ethanol or methanol proceeded in good yield. Decreased yields
were observed when the time of the reaction was reduced.
Thus, two viable methods for the direct synthesis of 2-
trichlorobenzoxazoles were developed. Importantly, these
methods are complementary and allow for flexibility with
regards to polar protic or nonpolar aprotic solvents, which have
implications on both downstream processing and the potential
for further tandem transformations.
Due to the high price and limited amounts of transitions

metals for catalysis23 and issues surrounding the use of
hydrocarbon solvents,24 we decided to focus on the more
sustainable noncatalyzed process in alcoholic solvents. Owing
to its high yield of product as well as increased workers’/
process safety and decreased environmental impact verses
traditional organic solvents,20,21 methanol was chosen as the
solvent for the direct formation of benzoxazoles from
halogenated nitriles. With the choice of solvent in hand, the
scope of the catalyst free method for the direct formation of
benzoxazoles was investigated. It was found that aryl-
substituted and fused aminophenols gave the corresponding
benzoxazoles 2b,c in good yields when reacted with
trichloroacetonitrile at 40 °C in methanol (Scheme 1).
Additionally, alkyl substituted aminophenols and electron rich
methoxy derivatives gave the expected benzoxazoles 2d−g in
good yield. Importantly, halogenated aminophenols formed the
corresponding benzoxazoles 2i−k, which contain a functional
group handle for further cross-coupling transformations.25,26

Finally, it was found that bis-benzoxazole 2l could be formed
from the corresponding bis-aminophenol in good yield by
increasing the amount of trichloroacetonitrile to 2.2 equiv.
Unfortunately, aminophenols with strongly electron with-
drawing groups, such as nitro and carboxylic acids moieties
did not afford any of the desired benzoxazoles and only the
starting materials were recovered. A number of the amino-
phenol substrates were also subjected to the platinum-catalyzed
conditions. For example, the platinum-catalyzed reaction of
aminophenol 1b with Cl3CCN in n-hexane at 80 °C afforded
the desired benzoxazole 2b in 20% yield. In all of the cases
examined, a lower isolated yield of the benzoxazole products
was observed in comparison to the methanol conditions. The
platinum-catalyzed process though may be applicable to
systems that require aprotic conditions or in which further
tandem processes facilitated by the platinum are desired.27

Additionally, the product trichlorobenzoxazoles are useful
substrates for further functionalization as the trichloro moiety
can be converted into a variety of other functional groups28−30

or directly displaced by a nucleophile.31,32

Next the reaction between aminophenols 1 and the less
activated nitrile, dichloroacetonitrile, to form 2-dichlorobenzox-
azoles 3 was investigated. The product dichlorobenzoxazoles 3
are potentially useful compounds as alkylating reagents33 and as
masked aldehydes.34 Reaction of aminophenol 1a with
dichloroacetonitrile in methanol at 40 °C afforded the desired
2-dichlorobenzonitrile 3a in good yield (Scheme 2). In

contrast, subjection of these reagents to the platinum-catalyzed
conditions only afforded 2-dichlorobenzonitrile 3a in 31% yield.
The scope of the methanol reaction was also explored and it
was found that methylated 3d, halogenated 3i,j, and bis-
benzoxazole 3l could be synthesized in good yields. The yields
of the 2-dichlorobenzoxazoles 3 were approximately 20% lower
than the corresponding 2-trichloro compounds 2, except in the

Scheme 1

aPtCl4 (10 mol %), n-hexane, 80 °C, 19 h. b2.2 equiv of Cl3CCN was
used.

Scheme 2

a4.0 equiv of dichloroacetonitrile was used.
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case of bis-benzoxazole 3l, which was formed in the same
isolated yield as 2l.
Mechanistically, we believe that the both the platinum-

catalyzed and the uncatalyzed methanol conditions proceed
through similar amidine intermediates 4/6 (Scheme 3).35

Platinum activation of the halogenated nitrile, followed by
nucleophilic addition of the aminophenol nitrogen would afford
platinum-amidine 4 after proton transfer.36 Intramolecular
addition of the pendant phenol followed by loss of ammonia,
facilitated by the platinum, would then afford the desired
substituted benzoxazole 2/3. This form of catalysis, in which
one metal catalyzes multiple, mechanistically distinct processes
is known as multifaceted catalysis37−46 and allows for a decrease
in overall cost in terms of time, waste and to the environment
in comparison to a traditional stepwise synthesis. In contrast,
the initial step of the uncatalyzed process is most likely
formation of imidate 5, via nucleophilic addition of methanol.29

The in situ formed imidate can then be attacked by
aminophenol 1 to afford amidine 6. Phenol addition and loss
of ammonia would then afford benzoxazoles 2/3.

In conclusion, a simple, catalyst free method for the direct
synthesis of substituted benzoxazoles from di- and trichlor-
oacetonitrile using the green solvent methanol without the
addition of exogenous acid or base has been developed.
Additionally, a platinum-multifaceted catalysis approach in the
aprotic organic solvent n-hexane was also developed, which
provides increased flexibility in the choice of reaction
conditions. We anticipate that these approaches to benzoxazole
synthesis will find wide application due to their utility and
operational simplicity. Further insights into the mechanisms of
these intriguing process and extending these approaches to less
activated nitriles are currently in progress and will be reported
in due course.
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